ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
R. H. Chen, M. L. Corradini, G. H. Su, S. Z. Qiu
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 46-59
Technical Paper | doi.org/10.13182/NSE12-22
Articles are hosted by Taylor and Francis Online.
In the present study, we propose a new fragmentation criterion for the explosion phase to take account of the effect of partial fuel melt solidification on the rapid fragmentation process. This new criterion judges whether or not the explosive fragmentation can occur by comparing the impact stress induced by vapor film collapse and water jet impingement with the fracture toughness of the corium crust layer. The fragmentation criterion was incorporated into the revised Thermal EXplosion Analysis Simulation (TEXAS) fuel-coolant-interaction (FCI) model TEXAS-VI and combined with the previously proposed fuel particle solidification model and the fragmentation criterion for the mixing phase. TEXAS-VI was compared to KROTOS alumina test K-44 and corium tests K-52 and K-53, and good agreement was obtained. The simulation results indicate that TEXAS-VI has the capability to consider the effect of partial solidification for both the mixing and the explosion phases of the FCI process and can capture the effect of fuel solidification, which reduces corium-water explosion energetics. Experiments K-52 and K-53 also demonstrate the ability of TEXAS-VI to model the effects of ambient pressure on energetics.