ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Syed Hameed Qaiser, Masood Iqbal, Aamer Iqbal Bhatti, Raza Samar, Javed Qadir
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 327-336
Technical Paper | doi.org/10.13182/NSE11-46
Articles are hosted by Taylor and Francis Online.
This paper discusses a higher-order sliding-mode-observer design for estimating reactivity in a nuclear research reactor. The nonlinear model of the Pakistan Research Reactor-1 (PARR-1) has been tuned and validated with experimental data. This model is then used for higher-order sliding-mode-observer-based reactivity estimation. In thermal reactors, reactivity is a very important reactor variable, as it determines the change of output power variation and is the main variable being manipulated for reactor power control. Linear observers have been used in the past to estimate reactivity, but the bandwidth is limited, and performance gets degraded as the operating point is changed. A nonlinear observer can efficiently address this problem. In this paper a robust higher-order sliding-mode observer is employed to estimate this variable. The higher-order sliding-mode observer is efficient and has the main advantage of reduced chattering. The estimators predict this variable with the measurement of neutron flux only. The estimated value is in close agreement with the theoretically calculated value.