ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Y. Oya et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 597-600
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A996
Articles are hosted by Taylor and Francis Online.
Typical materials for components, type 316 stainless steel (316-SS), were chosen as a sample and hydrogen isotope was charged by various methods, water adsorption, electrolysis and ion irradiation to elucidate hydrogen isotope behavior on/in SS. The chemical states of SS surface were studied by XPS and the hydrogen isotope retention and its desorption behavior were analyzed by TDS. Two types of surface finish, namely non-pretreated sample and pretreated sample by polish and annealing were prepared. It was found that the oxy-hydroxide and hydroxide were formed on the surface layer. The hydrogen isotope desorption stages consisted of three stages, namely the desorption stages from oxy-hydroxide, hydroxide and bulk hydrogen. A large amount of deuterium was trapped by the oxy-hydroxide layer for the non-pretreated sample with electrolysis. The hydrogen isotope trapping by this layer would have a large influence on the hydrogen isotope retention. The surface finish would be one of the effective improvement for decreasing its retention on SS.