ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Sugiyama, T. Tanabe, N. Bekris, M. Glugla, J. P. Coad
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 573-576
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A990
Articles are hosted by Taylor and Francis Online.
Tritium surface distributions on the plasma-facing surface and four sides of JET Mk IIA divertor tiles employed in the D-T operation phase of JET were measured by Tritium Imaging Plate Technique (TIPT). Tritium distribution on the plasma-facing surface was consistent with carbon deposition profiles and asymmetric in both poloidal and toroidal directions. The toroidal asymmetry was attributed to the alignment of the tiles preventing direct impact of flux lines to tile edges. Accordingly, no significant carbon deposition or tritium accumulation was observed on two sides facing the toroidal direction. As already reported, heavy codeposition retaining high levels of tritium was observed on the plasma-shadow area of the horizontal target tile surface and the bottom side of the vertical target tile of the inner divertor region where it was kept relatively cool by water coolant. In addition, TIPT has clearly distinguished at least two different carbon deposition layers with different tritium retention in poloidal direction, showing that the poloidal asymmetry on the horizontal target tiles is due to the different carbon deposition properties in the poloidal direction. All the results suggest that tritium retention in the divertor area, which was determined by the carbon/hydrocarbon distribution, correlates closely with divertor geometry and surface temperature.