ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Y. Hirohata et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 557-560
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A986
Articles are hosted by Taylor and Francis Online.
Retention characteristics of deuterium and hydrogen retained in graphite tiles placed in the divertor region of JT-60U were investigated by thermal desorption spectroscopy (TDS). The deuterium retained in the near surface of all graphite tiles was mostly replaced by hydrogen due to exposure to hydrogen plasma at the final stage operations, resulting in main deuterium retention in the deeper region. The dominant species desorbed from the divertor tiles were H2, HD, D2 and CH4. The smallest retention of hydrogen isotopes (H+D) was observed in the outer divertor tile which was eroded with maximum of 20 m depth. The amount of H+D retained in the inner divertor tiles covered by the re-deposited layers increased with the thickness of the re-deposited layers. Hydrogen isotopes concentration ((H+D)/C) in the re-deposited layers was ~0.02, which was much smaller than those observed in JET and other devices.