ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Luigi Scibile, Basil Kouvaritakis
Fusion Science and Technology | Volume 36 | Number 2 | September 1999 | Pages 139-164
Technical Paper | doi.org/10.13182/FST99-A98
Articles are hosted by Taylor and Francis Online.
The plasma vertical position in a tokamak can be open-loop unstable with time-varying dynamics. The limitation in the output power of the control amplifier makes the time-varying unstable system particularly difficult to control. Fixed-coefficient linear controllers usually fail to maintain control in the presence of large disturbances, like edge-localized modes (ELMs), which saturate the amplifier output. During the saturation period, the vertical position of the plasma will grow exponentially with the unstable eigenvalue and may reach values that cannot be controlled by the energy provided by the control amplifier, which is limited by practical constraints. The primary sources of disturbances and measurement noise that effect the vertical position are the ELMs and the 600-Hz noise from the thyristor power supplies. The former are present in the form of pulses and appear during high-energy confinement plasma configurations. A novel nonlinear controller for the vertical position based on a discrete adaptive near-time optimum control algorithm (DANTOC) is used to stabilize the system, to maximize the stability region, and to provide robustness with respect to the aforementioned sources of disturbances and measurement noise. The controller is tested in simulation for the Joint European Torus tokamak, and the results demonstrate its feasibility in controlling the vertical position for different plasma configurations. The controller is also tested on the COMPASS-D tokamak, and the results demonstrate the improvement with respect to a simple linear proportional and derivative controller in the presence of disturbances and measurement noise.