ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Tatsuhiko Uda, Takahiko Sugiyama, Yamato Asakura, Kenzo Munakata, Masahiro Tanaka
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 480-483
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A970
Articles are hosted by Taylor and Francis Online.
Recovery of tritium released into a working area in a nuclear fusion plant is a key issue of safety. The catalytic oxidation of isotopic hydrogen including tritium is a conventional method for removing tritium from the air of the room. If a tritium release accident occurs in the fusion plant, large volumes of air should be processed by the air cleanup system. The system should be designed to be able to process the gas with high volumetric velocity. However, the high throughput of air causes pressure drop in the catalyst bed, which results in high load to the pumping system. In this study, and their applicability of honeycomb catalysts to the tritium recovery system was examined. The honeycomb catalyst has an advantage in terms of pressure drop, which is far less than that in conventional particle-packed catalyst beds. The experiments on honeycomb catalysts such as cordierite and Al-Cr-Fe metal alloy indicate their preferable oxidizing performance. Particularly, the metal honeycomb has an advantage for hydrogen gas oxidization at room temperature because it is expected to be less affected memory effect by tritium contamination. Thus, these honeycomb catalysts are applicable to the tritiated gases recovery system with high performance.