ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Tatsuhiko Uda, Takahiko Sugiyama, Yamato Asakura, Kenzo Munakata, Masahiro Tanaka
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 480-483
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A970
Articles are hosted by Taylor and Francis Online.
Recovery of tritium released into a working area in a nuclear fusion plant is a key issue of safety. The catalytic oxidation of isotopic hydrogen including tritium is a conventional method for removing tritium from the air of the room. If a tritium release accident occurs in the fusion plant, large volumes of air should be processed by the air cleanup system. The system should be designed to be able to process the gas with high volumetric velocity. However, the high throughput of air causes pressure drop in the catalyst bed, which results in high load to the pumping system. In this study, and their applicability of honeycomb catalysts to the tritium recovery system was examined. The honeycomb catalyst has an advantage in terms of pressure drop, which is far less than that in conventional particle-packed catalyst beds. The experiments on honeycomb catalysts such as cordierite and Al-Cr-Fe metal alloy indicate their preferable oxidizing performance. Particularly, the metal honeycomb has an advantage for hydrogen gas oxidization at room temperature because it is expected to be less affected memory effect by tritium contamination. Thus, these honeycomb catalysts are applicable to the tritiated gases recovery system with high performance.