ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Y. Asakura et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 401-404
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A953
Articles are hosted by Taylor and Francis Online.
In order to realize the deuterium plasma experiments by using the Large Helical Device (LHD), NIFS is planning to install the system for tritium recovery from exhaust gas and effluent liquid. With the case of adopting generally used tritium recovery systems, NIFS has also made the development plans for the compact and less waste generating recovery system by applying the latest technologies such as tritium gas extraction with a proton conducting ceramic and tritiated water vapor removal with a membrane type dehumidifier. Applicability of these new technologies on the tritium recovery system for the LHD deuterium plasma experiment are evaluated quantitatively using the latest experimental data.Mock-up tests of the membrane type dehumidifier are carried out and verified the way of automated operation and stable dehumidifier performance during a long time operation.