ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Alexei D. Beklemishev, Peter A. Bagryansky, Maxim S. Chaschin, Elena I. Soldatkina
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 351-360
Technical Paper | doi.org/10.13182/FST10-A9497
Articles are hosted by Taylor and Francis Online.
Interaction between shear flows and plasma instabilities in axially symmetric mirrors can lead to improved confinement, observed both in experiments on the gas dynamic trap and in simulations. Shear flows, driven via biased end plates and limiters, in combination with finite-larmor-radius effects are shown to be efficient in confining high-beta plasmas even with a magnetic hill on axis. Interpretation of observed effects such as vortex confinement, i.e., confinement of the plasma core in the dead-flow zone of the driven vortex, is shown to agree well with simulations. Theoretical scaling laws predict such a confinement scheme to be useful even in fusion plasmas.