ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Richard F. Post
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 335-342
Technical Paper | doi.org/10.13182/FST10-A9495
Articles are hosted by Taylor and Francis Online.
This paper, part of a continuing study of means for the stabilization of magnetohydrodynamic interchange modes in axisymmetric mirror-based plasma confinement systems, represents a preliminary look at a technique that would employ a train of plasma pressure pulses produced by electron cyclotron resonance heating (ECRH) to accomplish the stabilization. The use of sequentially pulsed ECRH rather than continuous-wave ECRH facilitates the localization of the heated-electron plasma pulses in regions of the magnetic field with positive field-line curvature, e.g., in the "expander" region of the mirror magnetic field, outside the outermost mirror. The technique proposed relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. The plasma pulses, when produced in regions of the confining field having a negative gradient, create transient ambipolar electric potentials, an effect studied in 1964 in the PLEIADE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulse for times determined by ion inertia. It may be possible to use this aspect of pulsed ECRH not only to stabilize the plasma but also to plug mirror losses in a manner similar to that employed in the tandem mirror.