ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Yuelei Wu, Huasi Hu, Tiankui Zhang, Zhenghong Li, Yuanping Zhan, Zhenyu Jiang, Jun Chu
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 292-297
Technical Paper | doi.org/10.13182/FST10-A9472
Articles are hosted by Taylor and Francis Online.
The relationship and differences between pinhole imaging and penumbral imaging are explained and discussed in detail. A Monte Carlo (MC) model for a practical fusion neutron penumbral imaging system, which is expected to be used as one of the diagnostics of the nuclear facilities in China, was established. The source consists of many assumed discrete elements whose sizes equal the minimum resolution of the imaging system and that are identical to the point source in general concept. The point spread functions (PSFs) of two assumed discrete elements, located in the center and at the edge of a 200-m field of view (FOV) in the neutron source face, were obtained for two cases, respectively: imaging in geometrical near-optics and the more real case of an MC numerical experiment. A series of PSFs of points in the diameter of FOV were obtained, and the PSF spatial shift invariance tolerances were tested within [approximately]20 m accuracy. Using mathematical analysis convolution and MC numerical experiments, "penumbral images" of a neutron source, which consists of just four discrete elements in 20-m space, were obtained. Employing the same program, the two penumbral images were reconstructed, and the obtained original source images were basically the same. This allows the nature of encoding and decoding by the neutron penumbral imaging aperture prototype, which was designed by our work group, to be visualized and realized.