ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Trump leaves space nuclear policy executive order for Biden team
A hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA Television
Among the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.
The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.
Yuelei Wu, Huasi Hu, Tiankui Zhang, Zhenghong Li, Yuanping Zhan, Zhenyu Jiang, Jun Chu
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 292-297
Technical Paper | dx.doi.org/10.13182/FST10-A9472
Articles are hosted by Taylor and Francis Online.
The relationship and differences between pinhole imaging and penumbral imaging are explained and discussed in detail. A Monte Carlo (MC) model for a practical fusion neutron penumbral imaging system, which is expected to be used as one of the diagnostics of the nuclear facilities in China, was established. The source consists of many assumed discrete elements whose sizes equal the minimum resolution of the imaging system and that are identical to the point source in general concept. The point spread functions (PSFs) of two assumed discrete elements, located in the center and at the edge of a 200-m field of view (FOV) in the neutron source face, were obtained for two cases, respectively: imaging in geometrical near-optics and the more real case of an MC numerical experiment. A series of PSFs of points in the diameter of FOV were obtained, and the PSF spatial shift invariance tolerances were tested within [approximately]20 m accuracy. Using mathematical analysis convolution and MC numerical experiments, "penumbral images" of a neutron source, which consists of just four discrete elements in 20-m space, were obtained. Employing the same program, the two penumbral images were reconstructed, and the obtained original source images were basically the same. This allows the nature of encoding and decoding by the neutron penumbral imaging aperture prototype, which was designed by our work group, to be visualized and realized.