ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Delay, cost increase announced for U.K. nuclear project
Perspex screens and reduced seating capacity in the Hinkley Point canteens help protect the workforce during breaks, EDF Energy said. Photo: EDF Energy
The unfortunate effects of the COVID-19 pandemic on nuclear new-build projects haven’t stopped with Vogtle: EDF Energy this morning reported that the expected startup date for Unit 1 at its Hinkley Point C site is being pushed from late 2025 to June 2026.
In addition, the project’s completion costs are now estimated to be in the range of £22 billion to £23 billion (about $30.2 billion to $31.5 billion), some £500 million (about $686 million) more than the 2019 estimate, EDF said, adding the caveat that these revisions assume an ability to begin a return to normal site conditions by the second quarter of 2021.
S. Krupakar Murali, J. F. Santarius, G. L. Kulcinski
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 281-291
Technical Paper | dx.doi.org/10.13182/FST10-A9471
Articles are hosted by Taylor and Francis Online.
Inertial electrostatic confinement devices can generate secondary, thermionic, photo, and field emission electrons from the cathode grid, which is a drain on the system. Of the various electron emission contributions, methods to study and minimize the thermionic emission current are explored in this paper using a new diagnostic called "chordwire" - wire placed in the form of a chord of a circle inside the cathode that intercepts particles. This chordwire intercepts particles and gets heated; the rise in temperature can be monitored externally using a pyrometer. Local power balance on the chordwires can then be used to infer the particle flux reaching the chordwires. This diagnostic helps show that to accurately estimate the ion current reaching the central grid, the thermionic electron emission has to be taken into account. The thermionic emission could become significant even for low power operation (<10 kW) in the presence of asymmetric grid heating. The asymmetric grid heating can be mitigated by homogenizing the ionization source around the chamber. The ion-recirculation current equation has been updated to accommodate the thermionic emission current. This ion-recirculation current equation shows that while the electron current increases nonlinearly with the power-supply current (when the grid is thermionically active for input power that is >10 kW), the ion current increases only in a less-than-linear fashion. Hence, the scaling of the fusion productivity with the power-supply current appears to be less than linear. Material selection and device operation should be aimed at reducing this electron energy drain for optimum performance. The overall thermionic emission from the cathode could be reduced through the selection of appropriate grid material with high work function (e.g., Re and W-25%Re). Moreover, this material also has lower sputter yield relative to Type 304 stainless steel, thus helping in high-voltage operation of the device.