ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
S. Krupakar Murali, J. F. Santarius, G. L. Kulcinski
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 281-291
Technical Paper | doi.org/10.13182/FST10-A9471
Articles are hosted by Taylor and Francis Online.
Inertial electrostatic confinement devices can generate secondary, thermionic, photo, and field emission electrons from the cathode grid, which is a drain on the system. Of the various electron emission contributions, methods to study and minimize the thermionic emission current are explored in this paper using a new diagnostic called "chordwire" - wire placed in the form of a chord of a circle inside the cathode that intercepts particles. This chordwire intercepts particles and gets heated; the rise in temperature can be monitored externally using a pyrometer. Local power balance on the chordwires can then be used to infer the particle flux reaching the chordwires. This diagnostic helps show that to accurately estimate the ion current reaching the central grid, the thermionic electron emission has to be taken into account. The thermionic emission could become significant even for low power operation (<10 kW) in the presence of asymmetric grid heating. The asymmetric grid heating can be mitigated by homogenizing the ionization source around the chamber. The ion-recirculation current equation has been updated to accommodate the thermionic emission current. This ion-recirculation current equation shows that while the electron current increases nonlinearly with the power-supply current (when the grid is thermionically active for input power that is >10 kW), the ion current increases only in a less-than-linear fashion. Hence, the scaling of the fusion productivity with the power-supply current appears to be less than linear. Material selection and device operation should be aimed at reducing this electron energy drain for optimum performance. The overall thermionic emission from the cathode could be reduced through the selection of appropriate grid material with high work function (e.g., Re and W-25%Re). Moreover, this material also has lower sputter yield relative to Type 304 stainless steel, thus helping in high-voltage operation of the device.