ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
D. Testa, H. Carfantan, R. Chavan, J. B. Lister, J-M. Moret, M. Toussaint
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 238-273
Technical Paper | doi.org/10.13182/FST10-A9469
Articles are hosted by Taylor and Francis Online.
The measurement performance of the baseline system design for the ITER high-frequency magnetic diagnostic system and attempts at its optimization have been performed using an innovative method based on the sparse representation of signals and the minimization of the maxima of the spectral window for integer mode numbers. This analysis has led to the conclusion that 350 to 500 sensors are in fact needed to satisfy the ITER requirements for the measurement performance and the risk management over the machine lifetime, instead of the originally foreseen approximately 170 sensors. In the companion paper we have presented the general summary results of our work; here we present a more complete overview of the analysis method and further details of our test calculations.