ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
D. Testa, H. Carfantan, R. Chavan, J. B. Lister, J-M. Moret, M. Toussaint
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 208-237
Technical Paper | doi.org/10.13182/FST10-A9468
Articles are hosted by Taylor and Francis Online.
The measurement performance of the baseline system design for the ITER high-frequency magnetic diagnostic has been analyzed using an algorithm based on the sparse representation of signals. This algorithm, derived from the SparSpec code [S. Bourguignon et al., Astron. Astrophys., 462, 379 (2007)] has previously been extensively benchmarked on real and simulated JET data. To optimize the system design of the ITER high-frequency magnetic diagnostic, we attempt to reduce false detection of the modes and to minimize the sensitivity of the measurement with respect to noise in the data, loss of faulty sensors, and the displacement of the sensors. Using this approach, the original layout design for the ITER high-frequency magnetic diagnostic system, which uses 168 sensors, is found to be inadequate to meet the ITER measurement requirements.Based on this analysis, and taking into account the guidelines for the risk mitigation strategies that are given in the ITER management plan, various attempts at optimization of this diagnostic system have been performed. A revised proposal for its implementation has been developed, which now meets the ITER requirements for measurement performance and risk management. For toroidal mode number detection, this implementation includes two arrays of 50 to 55 sensors and two arrays of 25 to 35 unevenly spaced sensors each on the low-field side and two arrays of 25 to 35 unevenly spaced sensors each on the high-field side. For poloidal mode number detection, we propose six arrays of 25 to 40 sensors each located in nonequidistant machine sectors, not covering the divertor region and, possibly, poloidal angles in the range 75 < [vertical bar][vertical bar](deg) < 105, as this region is the most sensitive to the details of the magnetic equilibrium. In this paper we present the general summary results of this work, for which more details and an overview of our test calculations are reported in the companion paper.