ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
M. A. Shapiro, E. J. Kowalski, J. R. Sirigiri, D. S. Tax, R. J. Temkin, T. S. Bigelow, J. B. Caughman, D. A. Rasmussen
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 196-207
Technical Paper | doi.org/10.13182/FST10-A9467
Articles are hosted by Taylor and Francis Online.
The ITER electron cyclotron heating (ECH) transmission lines (TLs) are 63.5-mm-diam corrugated waveguides that will each carry 1 MW of power at 170 GHz. The TL is defined here as the corrugated waveguide system connecting the gyrotron mirror optics unit (MOU) to the entrance of the ECH launcher and includes miter bends and other corrugated waveguide components. The losses on the ITER TL have been calculated for four possible cases corresponding to having HE11 mode purity at the input of the TL of 100, 97, 90, and 80%. The losses due to coupling, ohmic, and mode conversion loss are evaluated in detail using a numerical code and analytical approaches. Estimates of the calorimetric loss on the line show that the output power is reduced by about 5, ±1% because of ohmic loss in each of the four cases. Estimates of the mode conversion loss show that the fraction of output power in the HE11 mode is [approximately]3% smaller than the fraction of input power in the HE11 mode. High output mode purity therefore can be achieved only with significantly higher input mode purity. Combining both ohmic and mode conversion loss, the efficiency of the TL from the gyrotron MOU to the ECH launcher can be roughly estimated in theory as 92% times the fraction of input power in the HE11 mode.