ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Trump leaves space nuclear policy executive order for Biden team
A hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA Television
Among the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.
The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.
R.-D. Penzhorn, Y. Torikai, S. Naoe, K. Akaishi, A. Perevezentsev, K. Watanabe, M. Matsuyama
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 185-195
Technical Paper | dx.doi.org/10.13182/FST57-3-185
Articles are hosted by Taylor and Francis Online.
Exposure of Type 316 stainless steel to tritium-containing hydrogen at an elevated temperature causes diffusion of the majority into the bulk and trapping of a small fraction in a thin oxide layer on the surface at concentrations far exceeding those in the bulk. The uptake by the bulk and surface layer is temperature and pressure dependent. After chemical erosion of the tritium-rich layer, the concentration of tritium on the topmost surface is slowly and asymptotically restored even at 298 K. Isothermal heating at 373 or 473 K until substantial release of the bulk tritium is associated with a comparatively much smaller liberation from the surface layer suggesting different retention and liberation mechanisms. The tritium inventory and profile evolution of homogeneously loaded Type 316 stainless steel caused by chronic release at the ambient temperature and radioactive decay were followed experimentally over several years and modeled successfully by a diffusion mechanism. The model has been adapted to specimens nonhomogeneously loaded with tritium only up to the subsurface. It simulates profile and inventory changes well even after prolonged aging. Chronic release constitutes an aging loss of tritium comparable to that of radioactive decay that should be taken into account for the assessment of tritium-contaminated stainless steel waste.