ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
R.-D. Penzhorn, Y. Torikai, S. Naoe, K. Akaishi, A. Perevezentsev, K. Watanabe, M. Matsuyama
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 185-195
Technical Paper | doi.org/10.13182/FST57-3-185
Articles are hosted by Taylor and Francis Online.
Exposure of Type 316 stainless steel to tritium-containing hydrogen at an elevated temperature causes diffusion of the majority into the bulk and trapping of a small fraction in a thin oxide layer on the surface at concentrations far exceeding those in the bulk. The uptake by the bulk and surface layer is temperature and pressure dependent. After chemical erosion of the tritium-rich layer, the concentration of tritium on the topmost surface is slowly and asymptotically restored even at 298 K. Isothermal heating at 373 or 473 K until substantial release of the bulk tritium is associated with a comparatively much smaller liberation from the surface layer suggesting different retention and liberation mechanisms. The tritium inventory and profile evolution of homogeneously loaded Type 316 stainless steel caused by chronic release at the ambient temperature and radioactive decay were followed experimentally over several years and modeled successfully by a diffusion mechanism. The model has been adapted to specimens nonhomogeneously loaded with tritium only up to the subsurface. It simulates profile and inventory changes well even after prolonged aging. Chronic release constitutes an aging loss of tritium comparable to that of radioactive decay that should be taken into account for the assessment of tritium-contaminated stainless steel waste.