ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
R.-D. Penzhorn, Y. Torikai, S. Naoe, K. Akaishi, A. Perevezentsev, K. Watanabe, M. Matsuyama
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 185-195
Technical Paper | doi.org/10.13182/FST57-3-185
Articles are hosted by Taylor and Francis Online.
Exposure of Type 316 stainless steel to tritium-containing hydrogen at an elevated temperature causes diffusion of the majority into the bulk and trapping of a small fraction in a thin oxide layer on the surface at concentrations far exceeding those in the bulk. The uptake by the bulk and surface layer is temperature and pressure dependent. After chemical erosion of the tritium-rich layer, the concentration of tritium on the topmost surface is slowly and asymptotically restored even at 298 K. Isothermal heating at 373 or 473 K until substantial release of the bulk tritium is associated with a comparatively much smaller liberation from the surface layer suggesting different retention and liberation mechanisms. The tritium inventory and profile evolution of homogeneously loaded Type 316 stainless steel caused by chronic release at the ambient temperature and radioactive decay were followed experimentally over several years and modeled successfully by a diffusion mechanism. The model has been adapted to specimens nonhomogeneously loaded with tritium only up to the subsurface. It simulates profile and inventory changes well even after prolonged aging. Chronic release constitutes an aging loss of tritium comparable to that of radioactive decay that should be taken into account for the assessment of tritium-contaminated stainless steel waste.