ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B. Weyssow
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 323-329
Transport Theory | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9423
Articles are hosted by Taylor and Francis Online.
An ideal plasma of electrons and a single species of ions in the low collisionality limit subject to an almost straight magnetic field is considered. In such conditions, the linear theory of transport determines the 3 × 1 matrix of dissipative fluxes [J with circumflex above]r namely, the electric current, the electronic heat flux and the ionic heat flux, in terms of a 3 × 1 matrix of thermodynamic forces [X with circumflex above] combining the electric field with the gradients of the densities and of the temperatures. The classical transport coefficients are the components of the 3 × 3 matrix of tensors [L with circumflex above]rs of the linear flux-force relations [J with circumflex above]r = [summation from s=1 to 9][L with circumflex above]rs[X with circumflex above]. The theory is developed in the framework of the statistical mechanics of charged particles starting from the Landau kinetic equation.