ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
H. R. Wilson
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 164-173
Equilibrium and Instabilities | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9407
Articles are hosted by Taylor and Francis Online.
Tearing modes often limit the performance of tokamak plasmas, because the magnetic islands which they generate lead to a loss of confinement, or even a disruption. A particularly dangerous instability is the neoclassical tearing mode, which can grow to a large amplitude because of the amplification effect that the bootstrap current has on an initial `seed' magnetic island. This paper will address the mechanisms which dominate the neoclassical tearing mode evolution, and thereby identify possible control techniques.