ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Stephen N. Paglieri, Scott Richmond, Ronny C. Snow, John S. Morris, Dale G. Tuggle
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 349-353
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A940
Articles are hosted by Taylor and Francis Online.
A bi-layer device was fabricated and tested for the direct collection of electrons emitted by tritium beta decay. The sensor functions at high pressures and concentrations where previously no simple and cost effective direct measurement technique existed for tritium. A polished KOVARTM (Fe-Ni-Co alloy) rod was coated with a 1-m thick insulating layer of alumina using electron-beam evaporation, physical vapor deposition (PVD) of alumina with oxygen dosing. The alumina deposition process was optimized to minimize pinholes and obtain a stable coating with high resistivity. The detector exhibited a nanoampere electrical response over a few decades of tritium concentration, up to pure tritium at 200 kPa. The sensor has been in service for several months now without showing signs of degradation and no discernible physical damage or change in efficiency has been observed.