ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
Henrik Sjöstrand, E. Andersson Sundén, L. Bertalot, S. Conroy, G. Ericsson, M. Gatu Johnson, L. Giacomelli, G. Gorini, C. Hellesen, A. Hjalmarsson, J. Källne, S. Popovichev, E. Ronchi, M. Weiszflog, M. Tardocchi, JET EFDA Contributors
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 162-175
Technical Paper | doi.org/10.13182/FST10-A9370
Articles are hosted by Taylor and Francis Online.
Fusion power production is the ultimate goal of fusion research, and its determination is crucial in any fusion energy application. In this paper the principles of collimated neutron flux measurements for fusion plasma power determination are described. In this method, a high-resolution neutron spectrometer provides an absolutely calibrated neutron flux, and a neutron profile monitor ("camera") gives information on the neutron emission profile of the plasma. The total neutron flux seen by the spectrometer is discussed in terms of direct and scattered flux, and a model is set up to evaluate the magnitude of these different components. Particular care is taken to estimate the uncertainties involved, both in the model and the measurements. The method is put to practical use at JET, where a magnetic proton recoil spectrometer and a neutron profile monitor are available. Results from JET's trace tritium experimental campaign in 2003 are presented and show that the systematic uncertainties in fusion power measurements are reduced in comparison to what has been presented for foil activation systems. A systematic error of 6% is reported here. For ITER these results imply that the fusion power can be redundantly measured and with better accuracies than for traditional methods.