ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Ronald F. Schmitt
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 152-161
Technical Paper | doi.org/10.13182/FST10-A9369
Articles are hosted by Taylor and Francis Online.
Two new methods for designing modular stellarator coils are presented. Stellarator coils provide necessary magnetic field to produce the plasma shape for a desired magnetohydrodynamic (MHD) equilibrium. The methods optimize a continuous current on a surface - i.e., coil current is represented by a continuous-current sheet on a toroidal winding surface - and the process of coil cutting is not addressed. In contrast to previously published continuous-current methods that optimize coil current by minimizing the flux at the plasma boundary, the new methods presented in this paper search for optimal solutions by minimizing the displacement of the plasma boundary, i.e., the last closed magnetic surface. The physical displacement of the plasma boundary is computed from the magnetic field normal using linear MHD perturbation theory. A comparison with two similar continuous-current codes is given in terms of both methodology and results. The new codes show modest improvement over previously published continuous-current codes.