ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Trump leaves space nuclear policy executive order for Biden team
A hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA Television
Among the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.
The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.
D. Pacella, G. Pizzicaroli, D. Mazon, P. Malard
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 142-151
Technical Paper | dx.doi.org/10.13182/FST10-A9368
Articles are hosted by Taylor and Francis Online.
In this paper we propose a soft-X-ray method to characterize dust accumulation or layer formation on a given substrate. The method determines the differential absorption based on the X-ray lines emitted from the substrate by fluorescence as a result of film or powders deposited on the substrate surface. We have chosen to use molybdenum as the material for the substrate because it is used in present-day tokamaks and it is being considered as material for the first mirror. It also offers the advantage of having two strong lines, well separated in energy: the L-shell emissions centered at [approximately]2.3 keV and the K lines at [approximately]17.4 keV. The transparency of the layer can be then measured at 2.3 keV, provided the K line is unaffected. The feasibility of the proposed method was clearly demonstrated in laboratory experiments, providing estimations of the thicknesses that can be detected, for a number of relevant elements for fusion devices (Be, C, Fe, and W).