ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Ronald D. Boyd, Sr., Aaron M. May
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 129-141
Technical Paper | doi.org/10.13182/FST10-A9367
Articles are hosted by Taylor and Francis Online.
High-heat-flux (HHF) removal (HHFR) limits can be formidable technological barriers that prevent or limit the normal implementation or optimization of new and novel devices or processes. A conjugate heat transfer HHFR simulation methodology has been developed with excellent resulting accuracy (>98.0% accurate) for predicting HHF amplification (peaking factors) and the peak flow channel inside wall temperature. The methodology can be used directly or expanded to a correlation form. Although the simulation utilized axial and swirl water flows with single-phase fully developed turbulent and subcooled flow boiling in a single-side-heated circular inside flow channel with a rectangular outer boundary, the methodology appears to be fluid- and flow regime-independent (e.g., applicable to developing or jet impingement flows) so that other fluids (e.g., gases, dielectric liquids, liquid metals) and flow regimes can be employed possibly for HHFR applications requiring specialized fluids and/or flow conditions. However, more work is required to validate the applicability of this methodology (and the correlation) to other fluids, flow regimes, and channel materials. Further, the approach can be expanded possibly to include applications employing a hypervapotron for HHFR. For the prototypic simulation cases (38.0 MW/m2) considered, the circumferential inside flow channel heat transfer coefficient distribution [h([varphi])] was not known a priori, so, h([varphi]) was determined from the unknown local inside wall heat flux via iterative finite element conjugate heat transfer analyses for flow regimes ranging from fully developed turbulent subcooled flow boiling (at the top of the flow channel) to single-phase turbulent flow (at the bottom of the flow channel).