ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Satoshi Fukada, Masashi Terashita
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 112-119
Technical Paper | doi.org/10.13182/FST10-A9365
Articles are hosted by Taylor and Francis Online.
The behavior of dynamic desorption of He, H2, and CH4 from a cryosorption pump is experimentally investigated using a simplified technique to roughly purify unburned D-T fuel exhausted from a fusion reactor. As a fundamental study to dynamically separate the unburned fuel and impurities, the discharge rates of H2 (as a representative of D2 and T2), He, and CH4 (as major impurities) are determined as a function of time or temperature, when the cryosorption pump is regenerated from [approximately]10 K to the room temperature of 285 to 300 K according to the experimental date. It is found that H2 is adsorbed and desorbed on active charcoal independent of the adsorption sites of He and CH4, which are evacuated simultaneously. The present result leads to a simplified method for roughly separating unburned fuel from impurities in fusion reactors by controlling the desorption temperature.