ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Masao Matsuyama, Yuji Torikai, Kuniaki Watanabe
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 324-331
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST48-324
Articles are hosted by Taylor and Francis Online.
The applicability of bremsstrahlung counting to in-situ measurements of high level tritiated water has been examined. A specially designed metallic vial fitted with a gold-coated beryllium window was prepared for the present examinations. Only tritiated water of a given amount was put into the vial. The volume dependence of the X-ray intensity showed that 5 cm3 of tritiated water is sufficient for measurements. It was found that the spectrum of X-rays induced by -rays consisted of only bremsstrahlung. The bremsstrahlung spectrum could be reproduced quite well by computational simulation. A good linear relation between the X-ray intensity and tritium concentration was obtained in the concentration range of 4 × 10-3-40 MBq cm-3. Furthermore, effect of nickel added as a model impurity to tritiated water was examined, and it was found that the tritium concentration can be evaluated from the X-ray intensity without any correction in the presence of impurity below 200 ppm.