ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
H. Takenaga, H. Kawashima, S. Nishio, K. Tobita
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 94-102
Technical Paper | doi.org/10.13182/FST10-A9270
Articles are hosted by Taylor and Francis Online.
A fueling scenario in a fusion reactor has been investigated, where tritium is fueled in the main plasma and deuterium is fueled in both the main plasma and the edge plasma. The tritium fueling in the main plasma minimizes the tritium fueling rate necessary for sustaining the high tritium density in the main plasma, resulting in the minimum tritium recycling level at the fixed pumping fraction. The deuterium fueling in the main plasma sustains the high deuterium density in the main plasma, and the deuterium fueling in the edge plasma enhances the deuterium recycling level for reducing the divertor temperature. Based on this scenario, particle balance was quantitatively investigated using the SlimCS design parameters at 2.95-GW fusion output with consideration of confinement times separately estimated for the particles fueled in the main plasma and the edge plasma. The fueling rates in the main plasma were evaluated to be 2.5 × 1022/s for tritium and 1.4 × 1022/s for deuterium when the confinement times for the particles fueled in the main and edge plasmas were assumed to be 2 s and 2 ms, respectively, and the divertor pumping fraction was assumed to be 3% of the particle flux to the divertor plates. For enhancement of the recycling level, the additional deuterium fueling in the edge plasma of 3.6 × 1023/s was required in this case. In order to satisfy the tritium balance, it was necessary to suppress the tritium retention rate to <0.01% of the tritium recycling rate and the tritium loss in the tritium cycle system to below 0.2% of the tritium fueling rate with the tritium breeding ratio of 1.05.