ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
V. S. Chan, R. D. Stambaugh, A. M. Garofalo, M. S. Chu, R. K. Fisher, C. M. Greenfield, D. A. Humphreys, L. L. Lao, J. A. Leuer, T. W. Petrie, R. Prater, G. M. Staebler, P. B. Snyder, H. E. St. John, A. D. Turnbull, C. P. C. Wong, M. A. Van Zeeland
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 66-93
Technical Paper | doi.org/10.13182/FST10-A9269
Articles are hosted by Taylor and Francis Online.
The objective of the Fusion Development Facility (FDF) under consideration is to carry forward advanced tokamak physics for optimization of fusion reactors and enable development of fusion's energy applications. A concept of FDF based on the tokamak approach with conservative expressions of advanced physics and nonsuperconducting magnet technology is presented. It is envisioned to nominally provide 2 MW/m2 of neutron wall loading and operate continuously for up to 2 weeks as required for fusion nuclear component research and development. FDF will have tritium breeding capability with a goal of addressing the tritium self-sufficiency issue for fusion energy. A zero-dimensional system study using extrapolations of current physics and technology is used to optimize FDF for reasonable power consumption and moderate size. It projects a device that is between the DIII-D tokamak (major radius 1.8 m) [J. L. Luxon, Nucl. Fusion, Vol. 42, p. 614 (2002)] and the Joint European Torus (major radius 3 m) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion, Vol. 25, p. 1011 (1985)] in size, with an aspect ratio A of 3.5 and a fusion gain Q of 2 to 5. Theory-based stability and transport modeling is used to complement the system study and to address physics issues related to specific design points. It is demonstrated that the FDF magnetohydrodynamic stability limits can be readily met with conservative stabilizing conducting wall placement. Transport analysis using a drift-wave-based model with an edge boundary condition consistent with the pedestal stability limit indicates that the FDF confinement requirement can also be readily satisfied. A surprising finding is that the toroidal Alfvén eigenmodes are stabilized by strong ion Landau damping. Analysis of vertical stability control indicates that the basis configuration with an elongation x [approximately] 2.35 can be controlled using a power supply technology similar to that used in DIII-D. Peak heat fluxes to the divertor are somewhat lower than those of ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Control. Fusion, Vol. 44, p. 519 (2002)], but FDF will operate with a higher duty factor.