ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
J. A. Leuer, B. J. Xiao, D. A. Humphreys, M. L. Walker, A. W. Hyatt, G. L. Jackson, D. Mueller, B. G. Penaflor, D. A. Piglowski, R. D. Johnson, A. S. Welander, Q. P. Yuan, H. Z. Wang, J. R. Luo, EAST Team
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 48-65
Technical Paper | doi.org/10.13182/FST10-A9268
Articles are hosted by Taylor and Francis Online.
The Experimental Advanced Superconducting Tokamak (EAST) was the first shaped tokamak of mega-ampere scale to achieve plasma utilizing a fully superconducting poloidal field coil system, and it is addressing ITER relevant superconducting constraints associated with the breakdown, plasma formation, and initial plasma current ramp. Electric field production for plasma start-up is severely limited in fully superconducting machines as a consequence of constraints associated with coil and lead voltages and eddy current heating in the superconducting coils. Such constraints motivate the use of electromagnetic modeling codes to design start-up scenarios for these devices. The successful first plasma campaign of the EAST superconducting tokamak was greatly facilitated by extensive and careful planning, development of appropriate modeling, simulation and diagnostic tools, a highly flexible plasma control system, and a highly experienced international collaboration team. We describe the design and modeling tools used to develop the first plasma scenario along with results of their application in the start-up campaign. Control design tools and plasma control algorithms utilized during the first campaign are discussed. Key physics, engineering, and operations results of the first plasma campaign are presented, including observations relevant to future devices such as ITER.