ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
G. L. Jackson, M. E. Austin, J. S. deGRASSIE, A. W. Hyatt, J. M. Lohr, T. C. Luce, R. Prater, W. P. West
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 27-40
Technical Paper | doi.org/10.13182/FST10-A9266
Articles are hosted by Taylor and Francis Online.
Second-harmonic X-mode (X2) electron cyclotron (EC) heating (ECH) has been used in DIII-D in conjunction with plasma initiation and current ramp-up. Although the toroidal inductive electric field E in DIII-D is high enough (0.9 to 1.0 V/m) to allow robust start-up without EC assist, start-up in fusion devices such as ITER will have lower fields (E = 0.3 V/m), and EC assist can provide a reproducible breakdown and an increased margin for burnthrough of low-Z impurities. ECH, applied before the inductive electric field, is used to separate the various phases of plasma breakdown and start-up and is defined as preionization. Preionization first occurs near the X2 resonance location and then expands in the vessel volume. Perpendicular launch (k[parallel] = 0) is found to produce the strongest preionization. The power threshold for preionization can be reduced by optimizing the prefill and the vertical field, although the lowest power threshold is not at the optimum value for ohmic start-up alone. An orbit-following code confirms that cold electrons (0.03 eV) can be sufficiently heated by ECH to energies above the threshold of ionization of hydrogen. This code predicts heating in new tokamaks such as KSTAR and ITER to energies where preionization can occur. The ITER start-up scenario has been simulated in DIII-D experiments, and X2 ECH assist has been applied at reduced toroidal loop voltage to assist burnthrough and plasma current ramp-up.