ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Trump leaves space nuclear policy executive order for Biden team
A hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA Television
Among the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.
The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.
C. C. Petty, M. E. Austin, J. Lohr, T. C. Luce, M. A. Makowski, R. Prater, R. W. Harvey, A. P. Smirnov
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 10-18
Technical Paper | dx.doi.org/10.13182/FST10-A9264
Articles are hosted by Taylor and Francis Online.
Recent experiments on the DIII-D tokamak have examined the effect of particle transport on the electron cyclotron current drive (ECCD) profile using measurements of the magnetic field pitch angles by motional Stark effect polarimetry. While previous ECCD studies on DIII-D did not observe any clear effects of transport, these new experiments at high ECCD power, low density, and radiation temperatures above 20 keV clearly demonstrate that the ECCD profile can be reduced and broadened compared to the Fokker-Planck code CQL3D predictions assuming no radial transport. A diffusion coefficient of [approximate]0.4 m2 /s is required in CQL3D to reproduce the experimental ECCD profile at high relative power densities, while smaller diffusion coefficients are needed at low relative power densities. This level of transport is comparable to the effective particle transport rate needed to maintain the density profile but an order of magnitude less than the electron thermal diffusivity. While radial transport of the current-carrying electrons is potentially detrimental for applications that rely on strong localization of the noninductive current, this effect should be negligible on ITER owing to its large size and low relative power density.