ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
N. K. Hicks, W. Suttrop, K. Behler, M. García-Muñoz, L. Giannone, M. Maraschek, G. Raupp, M. Reich, A. C. C. Sips, J. Stober, W. Treutterer, F. Volpe, Asdex Upgrade Team, S. Cirant, G. D'Antona
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 1-9
Technical Paper | doi.org/10.13182/FST57-1-1
Articles are hosted by Taylor and Francis Online.
The ASDEX Upgrade tokamak employs a 60-channel electron cyclotron emission (ECE) radiometer diagnostic for the measurement of radial electron temperature profiles of the plasma. The data acquisition (DAQ) portion of the system has now been upgraded to sample at 1 to 2 MHz, and accordingly, electron temperature fluctuations from 500 kHz to 1 MHz may be measured. The high spatial resolution of [approximately]1 cm and flexible magnetic field coverage from 1.5 to 3.0 T remain unchanged. The system can now provide observations of plasma phenomena on the magnetohydrodynamic timescale, such as neoclassical tearing modes (NTMs) and toroidal Alfvén eigenmodes (TAEs). The upgraded and existing DAQ systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented, along with an example of localization of [approximately]120-kHz TAEs in the fast ECE data. A principal planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH) or electron cyclotron current drive. For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. The NTM location is determined via correlation between ECE and Mirnov coil measurements, and results of this technique for (2,1) and (3,2) NTMs are presented. ECRH deposition is located by observing the modulation signature of the injected ECRH power in ECE measurements. Several additional applications enabled by the upgraded radiometer are also discussed.