ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
R. J. H. Pearce et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 274-279
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | dx.doi.org/10.13182/FST05-A926
Articles are hosted by Taylor and Francis Online.
'Trace Tritium Experiments' (TTE) were successfully performed on JET in 2003. The Campaign marked the first use of tritium in JET plasmas since the Deuterium-Tritium Experiment (DTE1) Campaign in 1997, and was the first use of tritium in experiments under the EFDA organisation with the UKAEA as JET Operator. The safety and regulatory preparations for the experiment were extensive. Since JET has been operated by the UKAEA the operations have followed the model of a licensed nuclear site. The safe operation of the JET torus is demonstrated in a safety case. Key Safety Management Requirement (KSMR) and Key Safety Related Equipment (KSRE) are identified in the Safety Case for DT operation. The safe operation of the torus is within the bounds of, and under the control of, an Authority to Operate (ATO). New technical challenges were presented by the need to inject and account for small quantities of tritium in very short pulses (~80ms), with an accurate time stamp. The safety and operational management of the campaign are described. Valuable lessons were learned which would help in running future experiments. It is concluded that JET is in a strong position to run future trace tritium and full DT discharges.