ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Osamu Mitarai, Akio Sagara, Nobuyoshi Ohyabu, Ryuichi Sakamoto, Akio Komori, Osamu Motojima
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1495-1511
Technical Paper | doi.org/10.13182/FST09-A9253
Articles are hosted by Taylor and Francis Online.
A new control method for the unstable operating point in the force-free helical reactor (FFHR) is proposed for low-temperature and high-density ignited operation. While in the stable ignition regime, the error of the fusion power of e'DT(Pf) = +(Pf0 - Pf) is used to obtain the desired fusion power with proportional-integral-derivative control of the fueling, we have discovered that in the unstable ignition regime, the error of the fusion power with an opposite sign of e'DT(Pf) = -(Pf0 - Pf) can stabilize the unstable operating point. Here, Pf0 is the fusion power set value, and Pf is the measured fusion power. Around the unstable operating point, excess fusion power (Pf0 < Pf) supplies fueling, increases the density, and then decreases the temperature. Less fusion power (Pf0 > Pf) in the subignited regime reduces the fueling, decreases the density, and then increases the temperature. While the operating point rotates to the clockwise direction in the stable ignition boundary, it rotates to the counterclockwise direction in the unstable ignition regime. Using this control algorithm, it is demonstrated that the operating point can reach the steady-state condition from an initial very low-temperature and low-density regime. The fusion power can also be shut down from the steady-state condition without any problems. Furthermore, characteristics of the stable and unstable ignition regimes are compared for the same fusion power, and control robustness to changes with various parameters has been studied.