This paper evaluates detritiation of air contaminated with tritium in the form of water vapor using a scrubber column filled with structured packing. This technique is based on isotopic exchange between tritiated water vapor and liquid water. In combination with a catalytic oxidizer operated at room or slightly elevated temperature, the scrubber column can also decontaminate air contaminated with tritiated molecular hydrogen. Mass transfer rates measured for structured packings made of stainless steel and copper alloy confirmed high efficiency of the detritiation process. Study of the effect of various operation parameters on column efficiency allows optimization of column operation. It was demonstrated that this technique is competitive with the drying technique with respect to the decontamination factor (DF) provided and the amount of tritiated water to be generated. Benefits offered by the wet scrubber technology are based on the nature of the isotopic exchange process. No need for regeneration allows reduction in the number of units and as such decreases the capital cost of the facility for continuous operation. The DF can be controlled by changing the flow rate of feedwater.