ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Chuck Tesch, Richard Carlson, Roy Michelotti, Mike Rogers, Scott Willms
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 258-261
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A923
Articles are hosted by Taylor and Francis Online.
The Los Alamos National Laboratory (LANL) Tritium Systems Test Assembly (TSTA) project was begun in 1978 to develop, design, and demonstrate the technology and safe operation of selected tritium processing systems required for a fusion reactor. In 2001, the US Department of Energy (DOE) determined that TSTA's mission was complete and that the facility should be stabilized.At the completion of the stabilization project in 2003, TSTA was categorized as a radiological facility. Before stabilization was complete, the tritium inventory at TSTA was grouped in the following categories: tritium gas mixed with hydrogen isotopes, tritiated water absorbed on molecular sieve, tritium held up as a hydride on various metals, and tritium held up in process components. For each of these, tritium content was characterized, a path for removal was determined, and the proper disposal package was developed. Hydrogen exchange, calorimetry, direct sampling, pressure/composition/temperature, radiological smear surveys, and controlled regeneration were used to determine the tritium inventory for each category of tritium.After removal, the tritium inventory was either (1) sent to other facilities for reuse processing or (2) buried at the LANL radioactive waste disposal site. One complete experimental system was packaged and transferred to another DOE site for future use. Special burial containers were designed and fabricated for the inventory buried at the LANL radioactive waste disposal site. The project was conducted with low tritium emission to the environment and negligible personnel exposure. After the tritium removal was complete, all remaining hardware and piping were opened and vented; the facility emission was below 1 Ci per day.