ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Ralph Ewig, Thomas R. Jarboe
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 62-68
Technical Paper | doi.org/10.13182/FST99-A92
Articles are hosted by Taylor and Francis Online.
A method for modeling the time-varying magnetic geometry in a low-aspect-ratio tokamak is developed. The model includes mutual inductance effects of an arbitrarily shaped (toroidally symmetric) conducting shell, poloidal field (PF) coils, a saddle coil with finite gap resistance, and a single element, distributed plasma current. The plasma current distribution is specified using EFIT results and remains unchanged during the simulation, while the magnitude of the plasma current is ramped up linearly over time. The resulting simulation code is used to predict power supply requirements and tracking capabilities of an arbitrarily chosen feedback mechanism employed to operate the PF coils of the tokamak.