ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
G. T. Hoang
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1417-1431
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9185
Articles are hosted by Taylor and Francis Online.
From both simulation and theoretical perspectives, the current density profile of magnetized plasma is expected to play an important role in turbulence. Optimization of both the safety factor q and the magnetic shear s can reduce turbulence, and therefore heat transport.Experimentally, external sources of heating and/or noninductive current drive have been used in Tore Supra to modify the current profile. In these experiments, electron heat diffusivity and turbulence level were found to be reduced when increasing s or reversing the q profile (i.e., negative s). As a consequence, confinement was improved.Core electron heat transport has been investigated. A critical threshold temperature gradient, above which turbulence strongly increases, has been experimentally determined. A parametric dependence study of this threshold pointed out the role of the ratio s/q, as expected by turbulence theory and simulations, thus explaining improved confinement regimes.Finally, thanks to the unique Tore Supra experimental conditions, the role of the q profile on turbulent particle transport was investigated. We have demonstrated that the electron density profile peaking is strongly governed by the q profile in low collisionality plasmas with dominant trapped electron modes.