ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Bucalossi, on behalf of Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1366-1380
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9183
Articles are hosted by Taylor and Francis Online.
One of the main missions of the Tore Supra tokamak was to open the route toward long-pulse plasma discharges in order to investigate phenomena that are involved in steady-state plasma control. In 1992, a 1-min flattop 1-MA discharge was performed with 2.5 MW of lower hybrid current drive (LHCD) power, the main limitation being the available flux. In 1996, at 0.8 MA, the duration was extended to 120 s (290 MJ injected energy), limited by in-vessel uncontrolled outgassing of inertial parts (away from the last closed flux surface) slowly heated by the plasma radiation. At the same time, fully noninductive operation was sustained at 0.6 MA for more than 1 min using two feedback loops: the control of the loop voltage (kept at zero) with the primary and the control of the plasma current with the LHCD power.Following these results, a major upgrade of the plasma-facing components was undertaken (Composants Internes et Limiteur project) and fully implemented in 2002. The vacuum vessel is now practically fully covered with actively cooled plasma-facing components monitored by a set of infrared endoscopes. In 2003, 1 GJ of injected/extracted energy was achieved in a 6-min, 0.5-MA discharge. All the plasma parameters were kept constant during the whole discharge, the plasma current being fully noninductively driven by 3 MW of LHCD. The pulse length limitation came from the aging klystron, originally designed for 30-s operation.Experimental results and analysis of the physics involved in these long-pulse discharges are reported and discussed.