ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
J. Bucalossi, on behalf of Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1366-1380
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9183
Articles are hosted by Taylor and Francis Online.
One of the main missions of the Tore Supra tokamak was to open the route toward long-pulse plasma discharges in order to investigate phenomena that are involved in steady-state plasma control. In 1992, a 1-min flattop 1-MA discharge was performed with 2.5 MW of lower hybrid current drive (LHCD) power, the main limitation being the available flux. In 1996, at 0.8 MA, the duration was extended to 120 s (290 MJ injected energy), limited by in-vessel uncontrolled outgassing of inertial parts (away from the last closed flux surface) slowly heated by the plasma radiation. At the same time, fully noninductive operation was sustained at 0.6 MA for more than 1 min using two feedback loops: the control of the loop voltage (kept at zero) with the primary and the control of the plasma current with the LHCD power.Following these results, a major upgrade of the plasma-facing components was undertaken (Composants Internes et Limiteur project) and fully implemented in 2002. The vacuum vessel is now practically fully covered with actively cooled plasma-facing components monitored by a set of infrared endoscopes. In 2003, 1 GJ of injected/extracted energy was achieved in a 6-min, 0.5-MA discharge. All the plasma parameters were kept constant during the whole discharge, the plasma current being fully noninductively driven by 3 MW of LHCD. The pulse length limitation came from the aging klystron, originally designed for 30-s operation.Experimental results and analysis of the physics involved in these long-pulse discharges are reported and discussed.