ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
R. Mitteau, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1353-1365
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9182
Articles are hosted by Taylor and Francis Online.
The main key to achieving high-power long-duration discharges on Tore Supra, the actively cooled toroidal pump limiter (TPL) is the main plasma-facing component, handling high heat fluxes. The heat pattern on the TPL presents features of both localized and large-area limiters (mixed influences of parallel and cross-field heat fluxes). The combination of the toroidal field ripple and the flat surface results in a peaked heat flux pattern with large private flux areas on the surface. The apparent heat flux decay length is shorter than 10 mm and varies by less than 10% with the plasma conditions. The conduction/convection is modeled within 5% by the heat flux deposition code TOKAFLUX. The heat pattern is further modified by the contribution of suprathermal particles (ion ripple losses, fast electrons). Altogether, the relation of the peak heat flux to a given injected power is consistent with modeling made during TPL design. The thermal response of the elements is also in line with the design, with a typical thermal time constant of 1 s and steady-state surface temperature during long discharges. An important issue being investigated concerns the growth of material deposits; they accumulate in shadowed areas and especially just along the frontier to plasma-wetted areas. In 2009, the limiter is still in operation and several thematics are still being actively investigated, such as the effect of the material deposits on the operation, the long-time-scale behavior of the tile to heat sink bond, and the deuterium retention.