ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
B. Pégourié, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1334-1352
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9181
Articles are hosted by Taylor and Francis Online.
Fuel retention in carbon plasma-facing components (PFCs) is such a major concern for next-step operation that it could prevent the use of this material in the D-T phase of ITER. Because of its complete set of actively cooled PFCs, Tore Supra offers a unique opportunity to study this phenomenon in conditions where the plasma exposure time is much longer than the thermal equilibration time of the PFCs. In addition to the main characteristics of permanent retention measured during long-discharge operation, this paper discusses the different mechanisms possibly at work in the continuous increase of the in-vessel inventory and describes the morphology and physical properties of the deposits found at several locations in the vacuum chamber. The main results are (1) that D retention mainly depends on the lower hybrid power coupled to the plasma and, to a lesser extent, on the edge temperature and fueling method, (2) that permanent D retention is mainly due to codeposition, and (3) that the hydrogenated carbon deposits present at the surface of the different PFCs are strongly disorganized graphite carbons when they are exposed to high heat fluxes, whose formation occurs through a heterogeneous growth involving both codeposition of nanoparticles and basic structural unit vapor condensates.