ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
B. Pégourié, A. Géraud, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1318-1333
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9180
Articles are hosted by Taylor and Francis Online.
Particle control is an essential requirement for long-pulse operation. Besides steady-state particle exhaust, the complementary key element is particle fueling. Three fueling methods are currently used in Tore Supra: conventional gas puffing, supersonic molecular beam injection, and pellet injection. In addition to a technical description of the corresponding systems, this paper presents an overview of different studies characterizing these methods in terms of fueling efficiency and ability to fuel long discharges or to obtain high-density plasmas with no confinement degradation. An analysis of the interaction between the plasma and the pellet or supersonic beam is also given, including the physics of the homogenization of the deposited particles in the background plasma (importance of the edge cooling and of the [nabla]B-induced displacement) or the transport-induced modification for deep-matter penetration (triggering of an improved confinement phase or, conversely, of a sawtooth crash when a pellet crosses the q = 1 surface).