ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. Loarer, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1300-1317
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9179
Articles are hosted by Taylor and Francis Online.
Tore Supra is a superconducting limiter tokamak designed for long and high-power discharges. In its initial phase, the plasma density control was handled by a set of seven modular limiters (total area [approximately]1.5 m2) equipped with pumps. An inner wall ([approximately]10 m2), covered with actively cooled carbon tiles, was used to handle high-power discharges. An ergodic divertor (ED), composed of six modules, was installed on the low-field side to create a stochastic edge layer for enhancing the edge radiation; all the modules were equipped with neutralizer plates and a pumping system. The performances, in terms of pumping capabilities and density control, are reported for the modular pump limiters and the ED modules, equipped with neutralizer plates for particle collection. Throat and vented geometries, respectively collecting ions and neutrals, were tested for the modular limiters and the ED. After 12 years of operation, a major upgrade (Composants Internes et Limiteur project) resulted in the replacement of all these plasma-facing components by a flat toroidal pump limiter (total area [approximately]7.6 m2) actively cooled and located at the bottom of the machine. Long discharges (6 min) with high energy input (>1.0 GJ) have been performed repetitively, in steady-state conditions.