ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
M. Lipa, J. Schlosser, F. Escourbiac
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1124-1149
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9171
Articles are hosted by Taylor and Francis Online.
To fulfill the Tore Supra mission (the realization and study of high-performance long-duration discharges), the development of reliable actively cooled plasma-facing components is mandatory. This was foreseen from the beginning of Tore Supra, and since 1985, the Tore Supra team has been involved in the development and fabrication of actively cooled plasma-facing components. The initial configuration of the machine in 1988 included a 12 m2 inner first wall made of stainless steel tubes armoured with brazed graphite, outer water-cooled stainless steel panels, and modular pump limiters. This configuration, using the inner wall as limiter, allowed 20- to 30-s-duration plasma discharges to be performed. Further progress required the development of a more reliable brazing technique and a limiter support system mechanically independent of the vacuum vessel. A new configuration (Composants Internes et Limiteur project), using a completely new concept of high-heat-flux components (including notably a braze-free bond between carbon-fiber composite tiles and copper heat sink), was therefore launched in 1997. With this new configuration, discharges up to 6 min with 1 GJ of injected and removed power were achieved in 2003.