ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
Koichi Maki, Chikara Konno, Fujio Maekawa, Hiroshi Maekawa, Katsumi Hayashi, Kobun Yamada
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 52-61
Technical Paper | doi.org/10.13182/FST99-A91
Articles are hosted by Taylor and Francis Online.
In traditional shielding design, thicknesses of shieldings have been determined so that calculated shielding properties multiplied by safety factors do not exceed design limits. A shielding design margin is defined for the safety factors that are included in the estimated shielding thicknesses in the design process. Sensitivities of the shielding design margin to the fusion reactor scale and amount of material are examined for a typical fusion experimental reactor such as the International Thermonuclear Experimental Reactor (ITER). From these investigations, supposing the shielding design margin can be made smaller by up to half the typical value of 3 used in a reactor, the amount of toroidal coil, transformer coil, and other torus component materials can be reduced by 1.5, 0.7, and 0.7%, respectively. If one includes a reactor building and accessory facilities that are not affected by the shielding design margin, the whole reactor material reduction becomes 0.55%. Since reactor cost is assumed to be proportional to the amount of material, the 0.55% reduction may be worth $55 million when the estimated price of the reactor is assumed to be $10 billion.