ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
Yuji Torikai, Ralf-Dieter Penzhorn, Masao Matsuyama, Kuniaki Watanabe
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 177-181
Technical Paper | Tritium Science and Technology - Decontamination and Waste | doi.org/10.13182/FST05-4
Articles are hosted by Taylor and Francis Online.
One conceivable option for the disposal of tritium-contaminated stainless steel consists in its storage at ambient temperature in a purged containment. To assess this option several stainless steel 316 specimens, previously loaded at elevated temperatures with 0.8-8.5 MBq of tritium, were flushed continuously with dry argon (water partial pressure 0.073 Pa) for extended periods of time. The released tritium (more than 99 % in the form of tritiated water (HTO)) was collected in bubblers and monitored periodically by liquid scintillation counting. After an initial fast liberation a fairly constant rate of the order of 0.2 % per day established. Tritium depth profile in the SS specimens could be simulated by a diffusion limited desorption model. The rate determining step for tritium release appears to be bulk diffusion.