ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
L. L. Snead, K. J. Leonard, G. E. Jellison, Jr., Mohamed Sawan, Tom Lehecka
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1069-1077
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-26
Articles are hosted by Taylor and Francis Online.
Dielectric mirrors have been considered for both magnetic and inertial confinement systems. Such mirrors are comprised of multiple thin bi-layers of high and low refractive index materials deposited onto a substrate. Three dielectric mirror types were fabricated to reflect at the KrF laser wavelength of 248 nm and these mirrors irradiated at ∼ 175 °C in the dose range of 0.001 to 0.1 x 1025 n/m2 (E>0.1 MeV.) Mirror reflectivity was measured on as-irradiated and on 300 and 400 °C vacuum annealed mirrors. The best performing mirror overall, the alumina/silica multilayer mirror, did not appear to have degraded reflectivity in the as-irradiated or the as-irradiated and annealed conditions. For the highest dose, annealed condition degradation was observed in the hafnia silica mirror. Additionally, laser induced damage threshold was measured on the best performing mirror (the alumina/silica mirror) with a resulting threshold of > 1 J/cm2, For this mirror, the damage threshold was not discernibly degraded by neutron irradiation. These findings are somewhat in contradiction to earlier work, which suggested poor performance of dielectric mirrors at an order of magnitude lower neutron dose. In conclusion, the current findings, while preliminary, suggest the possibility for using dielectric mirrors to much higher dose levels.