ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Ohio Senate votes to repeal nuclear plant subsidies
After months of unsuccessful efforts by Ohio lawmakers to contend with the fallout from H.B. 6—the now-infamous nuclear subsidies bill signed into law in 2019—the state’s senate on March 3 passed a measure, S.B. 44, to repeal those subsidies. The vote was 32–0.
For those who may need reminding, federal prosecutors on July 21, 2020, arrested Larry Householder, then speaker of the Ohio House, and four lobbyists and political consultants for their involvement in an alleged $61 million corruption and racketeering scheme aimed at guaranteeing passage of H.B. 6, whose subsidies had kept Ohio’s Davis-Besse and Perry nuclear power plants from premature closure.
H.B. 6 established a seven-year program to charge the state’s electricity consumers fees to support payments of about $150 million annually to the plants’ operator, Energy Harbor Corporation, then known as FirstEnergy Solutions (FES). FES had announced in March 2018 that it would be forced to close Davis-Besse and Perry without some form of support from the state. (The payments to Energy Harbor were blocked last December by an Ohio Supreme Court injunction, which complemented an earlier lower court ruling.)
Donghua Xu, Brian D. Wirth
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1064-1068
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | dx.doi.org/10.13182/FST09-A9052
Articles are hosted by Taylor and Francis Online.
Helium effects are among the most critical subjects in fusion materials research. A major task in the study of He effects is to understand how He interacts with irradiation-induced and/or inherent defects and how the interactions govern the subsequent microstructural evolution. Thermal desorption spectrometry (TDS) provides an appropriate platform for both experimentally probing the kinetics and energetics of He-defect interactions and computationally validating the parameterization of rate theory models. In this paper we present preliminary results on the spatially dependent rate theory modeling of TDS of He-implanted single crystalline iron under the same conditions as explored in our recent experiments. Included in the present model are previously reported migration energies for self-interstitial-atom (SIA), di-SIA and interstitial He from ab initio calculations, and binding energies of HexVy, Vm and In clusters from thermodynamic calculations or ab initio based extrapolations. With a small amount of parameter optimization, several major features observed in the experimental TDS spectra have been reasonably reproduced by the model, while further and more complete validation through both experiments and computation remains to be carried out.