ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Takuya Nagasaka, Ryuta Kasada, Akihiko Kimura, Yoshio Ueda, Takeo Muroga
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1053-1057
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-1053
Articles are hosted by Taylor and Francis Online.
Tungsten (W) coating on various low activation materials, such as ferritic steel (F82H), oxide dispersion strengthened (ODS) steel, and vanadium alloy NIFS-HEAT-2 (NH2) was successfully demonstrated by the vacuum plasma spray (VPS) process. Void and crack-type defects were observed in VPS-W. The mass density of VPS-W at room temperature (RT) was ∼90 % of the bulk W (sintered W). The thermal diffusivity and thermal conductivity of VPS-W from RT to 800 °C were 30∼50 % of the bulk W, while the linear expansion coefficient and specific heat of VPS-W were similar to the bulk W. The thermal conductivity of VPS-W was significantly lower than the bulk W, but was still larger than the NH2 substrate. There was no significant thermal contact resistance at the interface between W coating and NH2 substrate. Thus, the heat transfer properties of NH2 will not be degraded by the W coating with the VPS process.